Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Peter L. Langen (Ed.)Arctic Amplification is a fundamental feature of past, present, and modelled future climate. However, the causes of this “amplification” within Earth’s climate system are not fully understood. To date, warming in the Arctic has been most pronounced in autumn and winter seasons, with this trend predicted to continue based on model projections of future climate. Nevertheless, the mechanisms by which this will take place are numerous, interconnected. and complex. Will future Arctic Amplification be primarily driven by local, within-Arctic processes, or will external forces play a greater role in contributing to changing climate in this region? Motivated by this uncertainty in future Arctic climate, this review seeks to evaluate several of the key atmospheric circulation processes important to the ongoing discussion of Arctic amplification, focusing primarily on processes in the troposphere. Both local and remote drivers of Arctic amplification are considered, with specific focus given to high-latitude atmospheric blocking, poleward moisture transport, and tropical-high latitude subseasonal teleconnections. Impacts of circulation variability and moisture transport on sea ice, ice sheet surface mass balance, snow cover, and other surface cryospheric variables are reviewed and discussed. The future evolution of Arctic amplification is discussed in terms of projected future trends in atmospheric blocking and moisture transport and their coupling with the cryosphere. As high-latitude atmospheric circulation is strongly influenced by lower-latitude processes, the future state of tropical-to-Arctic teleconnections is also considered.more » « less
-
Abstract The Greenland Ice Sheet (GrIS) is losing mass at an increasing rate yet mass gain from snowfall still exceeds the loss attributed to surface melt processes on an annual basis. This work assesses the relationship between persistent atmospheric blocking across the Euro‐Atlantic region and enhanced precipitation processes over the central GrIS during June–August and September–November. Results show that the vast majority of snowfall events in the central GrIS coincide with Euro‐Atlantic blocking. During June–August, snowfall events are produced primarily by mixed‐phase clouds (88%) and are linked to a persistent blocking anticyclone over southern Greenland (84%). The blocking anticyclone slowly advects warm, moist air masses into western and southern Greenland, with positive temperature and water vapor anomalies that intensify over the central GrIS. A zonal integrated water vapor transport pattern south of Greenland indicates a southern shift of the North Atlantic storm track associated with the high‐latitude blocking. In contrast, snowfall events during September–November are largely produced by ice‐phase clouds (85%) and are associated with a blocking anticyclone over the Nordic Seas and blocked flow over northern Europe (78%). The blocking anticyclone deflects the westerly North Atlantic storm track poleward and enables the rapid transport of warm, moist air masses up the steep southeastern edge of the GrIS, with positive temperature and water vapor anomalies to the east and southeast of Greenland. These results emphasize the critical role of Euro‐Atlantic blocking in promoting snowfall processes over the central GrIS and the importance of accurate representation of blocking in climate model projections.more » « less
An official website of the United States government
